Last Time.
(1) Defined vector bundles $E \xrightarrow{\pi} M$.
(2) Space of sections $\Gamma(E)$ of $E \xrightarrow{\pi} M$.
(3) Local sections.
(4) Morphisms of vector bundles.
(5) Trivial bundles.
(6) Vector bundles are locally trivial.

Goal. Operations on vector bundles. I.e. given $E \xrightarrow{\pi} M$ we will construct $E^{*} \xrightarrow{\pi^{*}} M$ with $\left(E^{*}\right)_{q}=$ $\operatorname{Hom}\left(E_{q}, \mathbb{R}\right)$ or $\Lambda^{k}(E) \rightarrow M$, et cetera.

Let $E \xrightarrow{\pi} M$ be a rank k vector bundle. Then there exists an open cover $\left\{U_{\alpha}\right\}_{\alpha \in A}$ of M and local trivializations $\left\{\varphi_{\alpha}:\left.E\right|_{U_{\alpha}}=\pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{k}\right\}_{\alpha \in A}$ with $\operatorname{pr}_{1} \circ \varphi_{\alpha}=\pi$ and $\forall q \in U_{\alpha},\left.\varphi_{\alpha}\right|_{E_{q}}: E_{q} \rightarrow\{q\} \times \mathbb{R}^{k}$ are linear isomorphisms. What happens over the overlaps $U_{\alpha} \cap U_{\beta}$. The following diagram commutes:

Hence $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}:\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{k} \rightarrow\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{k}$ is C^{∞} and is of the form $(q, v) \mapsto(q, F(q, v))$ for some smooth $\operatorname{map} F:\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ with $F(q,-): \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ a linear isomorphism for all $q \in\left(U_{\alpha} \cap U_{\beta}\right)$. So there is a smooth map $\varphi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}\left(\mathbb{R}^{k}\right)$ with $F(q, v)=\varphi_{\alpha \beta}(q) v$. That is, $\left(\varphi_{\alpha} \circ \varphi_{\beta}^{-1}\right)(q, v)=\left(q, \varphi_{\alpha \beta}(q) v\right)$. Thus we get a collection of maps $\left\{\varphi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}\left(\mathbb{R}^{k}\right)\right\}_{\alpha, \beta \in A}$ called the transition maps of the bundle $E \xrightarrow{\pi} M$ with respect to the cover $\left\{U_{\alpha}\right\}_{\alpha \in A}$.
Example 26.1. $E=T M \xrightarrow{\pi} M,\left\{\phi^{(\alpha)}=\left(x_{1}^{(\alpha)}, \ldots, x_{m}^{(\alpha)}\right): U_{\alpha} \rightarrow \mathbb{R}^{m}\right\}$ an atlas of coordinate charts. Corresponding trivializations $\varphi_{\alpha}: T U_{\alpha} \rightarrow U_{\alpha} \times \mathbb{R}^{m}$ are given by $\varphi_{\alpha}(q, v)=\left(q,\left(\mathrm{~d} x_{1}^{(\alpha)}\right)_{q} v, \ldots,\left(\mathrm{~d} x_{m}^{(\alpha)}\right)_{q} v\right)$.

$$
\begin{aligned}
\varphi_{\alpha \beta}(q) w & =\left(\operatorname{pr}_{2} \circ \varphi_{\alpha} \circ \varphi_{\beta}^{-1}\right)(q, v) \\
& =\left(\operatorname{pr}_{2} \circ \varphi_{\alpha}\right)\left(q,\left.\sum w_{j} \frac{\partial}{\partial x_{j}^{(\beta)}}\right|_{q}\right) \\
& =\left(\left.\left(\mathrm{d} x_{1}^{(\alpha)}\right) q \sum w_{j} \frac{\partial}{\partial x_{j}^{(\beta)}}\right|_{q}, \ldots,\left.\left(\mathrm{~d} x_{m}^{(\alpha)}\right) q \sum w_{j} \frac{\partial}{\partial x_{j}^{(\beta)}}\right|_{q},\right) \\
& =\left(\frac{\partial x_{i}^{(\alpha)}}{\partial x_{j}^{(\beta)}}(q)\right)\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{m}
\end{array}\right)
\end{aligned}
$$

Therefore the transition maps are $\varphi_{\alpha \beta}(q)=\mathrm{d}\left(\varphi_{\alpha} \circ \varphi_{\beta}^{-1}\right)_{\varphi_{\beta}(q)}$
Example 26.2. Tautological line bundle $L \rightarrow \mathbb{R P}^{n}$.
Recall that $\mathbb{R}^{n}=\left(\mathbb{R}^{n+1} \backslash\{o\}\right) / \sim$ is the space of all lines (through 0) in \mathbb{R}^{n+1} where $v \sim \tilde{v}$ if and only if v and \tilde{v} are linearly independent. Hence $L=\left\{(l, w) \in \mathbb{R}^{n} \times \mathbb{R}^{n+1} \mid w \in l\right\}$. We have a map $\pi: L \rightarrow \mathbb{R} \mathbb{P}^{n}$, $\pi(l, w)=l$. We won't check that this is a vector bundle.

Let $U_{i}=\left\{\left[v_{0}, \ldots, v_{n}\right] \in \mathbb{R P}^{n} \mid v_{i} \neq 0\right\}$. Then $\varphi_{i}: L_{U_{i}} \rightarrow U_{i} \times \mathbb{R}$ such that

$$
\varphi_{i}\left(\left[v_{0}, \ldots, v_{n}\right],\left(w_{0}, \ldots, w_{n}\right)\right)-\left(\left[v_{0}, \ldots, v_{n}\right], w_{i}\right)
$$

are local trivializations. It is not hard to see that

$$
\varphi_{j}^{-1}\left(\left[v_{0}, \ldots, v_{n}\right], \lambda\right)\left(\left[v_{0}, \ldots, v_{n}\right], \lambda \cdot\left(\frac{v_{0}}{v_{j}}, \ldots, \frac{v_{n}}{v_{j}}\right)\right) .
$$

Consequently

$$
\left(\varphi_{i} \circ \varphi_{j}^{-1}\right)([v], \lambda)=\left([v], \lambda \frac{v_{i}}{v_{j}}\right)
$$

Therefore $\varphi_{i j}([v])=\frac{v_{i}}{v_{j}}$ are the transition maps.
Remark 26.3. Note that the transition maps $\left\{\varphi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}\left(\mathbb{R}^{k}\right)\right.$ satisfy a number of conditions. Since $\varphi_{\alpha \beta}(q) v=\left(\varphi_{\alpha} \circ \varphi_{\beta}^{-1}\right)(q, v)$ we have the following three conditions:

- $\varphi_{\alpha \alpha}(q)=\operatorname{id}_{\mathbb{R}^{k}}$
- $\varphi_{\alpha \beta} \cdot \varphi_{\beta \alpha}=\operatorname{id}_{\mathbb{R}^{k}}$
- $\varphi_{\alpha \beta} \cdot \varphi_{\beta \gamma} \cdot \varphi_{\gamma \alpha}=\mathrm{id}_{\mathbb{R}^{k}}$

These conditions are called the cocycle conditions.
Goal. Let us now construct the bundle $E^{*} \rightarrow M$ dual to a bundle $E \rightarrow M$.
As a set we define $E^{*} \stackrel{\text { def }}{=} \coprod_{q \in M}\left(E_{q}\right)^{*}$. We need to give E^{*} a manifold structure and we need local trivializations. Since $E \xrightarrow{\pi} M$ is a vector bundle, we have a cover $\left\{U_{\alpha}\right\}$ of M and local trivializations $\varphi:\left.E\right|_{U_{\alpha}} \rightarrow U_{\alpha} \times \mathbb{R}^{k}$ where $k=\operatorname{rank} E$. For all $q \in U_{\alpha}$ we have $\left.\varphi_{\alpha}\right|_{E_{q}}: E_{q} \rightarrow\{q\} \times \mathbb{R}^{k}$. Hence we have

$$
\left(\left.\varphi_{\alpha}\right|_{E_{q}}\right)^{*}:\{q\} \times\left(\mathbb{R}^{k}\right)^{*} \rightarrow\left(E_{q}\right)^{*}=E_{q}^{*}
$$

and therefore $\forall q \in U_{\alpha}$

$$
\left[\left(\left.\varphi_{\alpha}\right|_{E_{q}}\right)^{*}\right]^{-1}: E_{q}^{*} \rightarrow\{q\} \times\left(\mathbb{R}^{k}\right)^{*}
$$

We then get a collection of bijections $\left\{\varphi_{\alpha}^{*}:\left.E^{*}\right|_{U_{\alpha}} \rightarrow U_{\alpha} \times\left(\mathbb{R}^{k}\right)^{*}\right\}_{\alpha \in A}$. What about transition maps? For $w \in \mathbb{R}^{k}$ and $l \in\left(\mathbb{R}^{k}\right)^{*}$ we have

$$
\begin{aligned}
\left(\varphi_{\alpha} \circ \varphi_{\beta}\right)^{-1}(q, w) & =\left(q, \varphi_{\alpha \beta}(q) w\right) \\
& =\left(q,\left.\varphi_{\alpha}\right|_{E_{q}} \circ\left(\left.\varphi_{\beta}\right|_{E_{q}}\right)^{-1} w\right) .
\end{aligned}
$$

Consequently

$$
\left(\varphi_{\alpha}^{*} \circ\left(\varphi^{*}\right)_{\beta}\right)^{-1}(q, l)=\left(q,\left[\left(\left.\varphi_{\alpha}\right|_{E_{q}}\right)^{*}\right]^{-1}\left(\left[\left(\left.\varphi_{\beta}\right|_{E_{q}}\right)^{*}\right]^{-1}\right)^{-1} l\right)
$$

Hence the purported transition maps $\varphi_{\alpha \beta}^{*}$ for E^{*} are given by $\varphi_{\alpha \beta}^{*}(q)=\left[\varphi_{\alpha \beta}(q)^{*}\right]^{-1}$. Therefore $\varphi_{\alpha \beta}^{*}=G \circ \varphi_{\alpha \beta}$ where G is the composite map

$$
\begin{array}{ccccc}
\mathrm{GL}\left(\mathbb{R}^{k}\right) & \rightarrow & \mathrm{GL}\left(\left(\mathbb{R}^{k}\right)^{*}\right) & \rightarrow & \mathrm{GL}\left(\left(\mathbb{R}^{k}\right)^{*}\right) \\
A & \mapsto & A^{*} & & \\
& & B & \mapsto & B^{-1}
\end{array}
$$

which is C^{∞}. We'll see next time that the smoothness of the purported transition maps allows us to make E^{*} into a vector bundle.

